
Salvium review

Cypher Stack∗

July 19, 2024

This report contains a review of an informal description of the Salvium pro-
tocol. As with any such report, it may contain errors and cannot guarantee
correctness or security. Further, it cannot guarantee that any particular im-
plementation of the construction is correct, secure, or suitable for intended use
cases.

The author asserts no warranty and disclaims liability for its use. The author
further expresses no endorsement of any kind. This report has not undergone
any further formal or peer review.

Contents

1 Introduction 2

2 Return functionality 2
2.1 Protocol for return functionality 3
2.2 Protocol for non-return functionality 5
2.3 Analysis . 5

2.3.1 Design requirements . 5
2.3.2 Subaddress implications 6
2.3.3 Return data encryption 7

3 Transaction types 7
3.1 Transfer transactions . 8
3.2 Additional transaction types . 9
3.3 Destination specification . 9
3.4 Analysis . 10

3.4.1 Censorship risk . 10
3.4.2 Protocol transaction structure 11
3.4.3 Use of return functionality 11
3.4.4 Reuse of protocol transaction outputs 12

∗https://cypherstack.com

1

https://cypherstack.com

1 Introduction

Salvium is a transaction protocol built as a modification of the Monero protocol,
with an associated forked codebase.

One feature it seeks to add is return functionality, in which the sender of a
transaction safely includes data that the recipient can use to generate a later
transaction sending funds back to the original sender.

Separately, the protocol adds more general transaction types. These types
may require that transaction amounts no longer strictly balance. Normally,
consensus rules require that the sum of consumed output values precisely equal
the sum of generated output values (along with a plaintext fee) without revealing
any of the output values to the network.

Salvium provided informal descriptions of the design aspects for these two
goals to Cypher Stack. In this report, we expand on this descriptions for the
purposes of improved clarity and analysis, present them using more standard
notation, and determine the extent to which the protocol is likely to achieve
the goals. We caution, however, that a formal security model of the transaction
protocol was not provided; as such, any such analysis is inherently limited.
Further, this analysis does not reflect any particular implementation of the
protocol, and cannot make any conclusions about such implementations.

Throughout the report, we generally use notation from the “Zero to Monero”
documentation1 by Monero contributor koe, as its notation is thorough, very
consistent, and as such an increasingly de facto standard for Monero protocol
research and development.

2 Return functionality

For the sake of clarity, suppose that Alice wishes to generate a transaction
sending funds to Bob.

Salvium seeks to provide return functionality, whereby Alice can securely
communicate in-band data to Bob that enables him to later generate a trans-
action sending funds back to Alice.

Informally, any design meeting this goal should have the following properties:

1. A transaction containing return data must not be distinguishable from a
transaction not containing return data to an observer (aside from unre-
lated metadata).

2. Multiple transactions containing return data for Alice must not be linkable
to an observer (aside from unrelated metadata).

3. If Alice does not wish to include return data, Bob must be able to detect
this.

1https://github.com/UkoeHB/Monero-RCT-report

2

https://github.com/UkoeHB/Monero-RCT-report

4. If Alice includes return data, it must be reusable; Bob must be able to
generate multiple return transactions using the data, all of which Alice
can properly receive.

5. Any entity aside from Bob (or his delegate) must not be able to recover
the return data, if any, from a transaction.

6. Any entity aside from Alice (or her delegate) must not be able to receive
any return transaction.

Because Salvium transactions (like those in Monero) permit storage of arbi-
trary associated data, a simple approach to this is to encrypt Alice’s address to
Bob and include it as additional data. On receipt of the transaction, Bob can
decrypt the address and use it for a later return transaction that directs funds to
Alice. However, this is somewhat inefficient. Salvium addresses use a dual-key
design that consists of two elliptic curve group elements, each of which encodes
to 32 bytes. This implies (at least) an extra 64 bytes of data per transaction.

Instead, Salvium’s design for return functionality follows a proposal2 by
Monero contributor knaccc that is more efficient. We describe this design here
with updated notation for completeness. Note that while the linked design
supports transactions sending to multiple recipients, Salvium restricts this to
transactions sending only to a single recipient.

2.1 Protocol for return functionality

Suppose that Alice has a secret keypair (kvA, k
s
A) and corresponding address

(Kv
A,K

s
A), and that Bob has a secret keypair (kvB , k

s
B) and corresponding address

(Kv
B ,K

s
B), where each address component is computed by multiplication of the

corresponding secret key component by group generator G. It may be the case
that either of Alice’s or Bob’s addresses is a subaddress. Alice wishes to produce
a transaction sending funds to Bob, such that Bob should be able to extract
data sufficient to later produce a return transaction to Alice.

Alice constructs her transaction to Bob mostly as usual, so we describe only
the steps relevant for the updated design. When constructing her transaction,
Alice generates a one-time output key Ko to Bob:

1. Samples a scalar r uniformly at random.

2. Computes the one-time output key Ko = Hn(rK
v
B)G+Ks

B .

3. If Bob’s address is a subaddress, computes R = rKs
B as the transaction

key; otherwise, computes R = rG as the transaction key.

4. Continues generating the output as usual, including Ko and R in the
transaction.

2https://github.com/monero-project/research-lab/issues/53

3

https://github.com/monero-project/research-lab/issues/53

She also generates a one-time change output

Ko
c = Hn(k

v
AR)G+Ks

A

to herself as usual. Note that this procedure uses the transaction key R from
above; this is well defined since Salvium permits only transactions consisting of
a single non-change output. Then, Alice computes the value

y = Hn ("refund",Hn(rK
v
B))

and includes the value F = y−1kvAK
o
c in the transaction as additional data.

Note that the only modification from a standard transaction is the inclusion
of the value F , which does not require a change to consensus rules.

Bob receives the funds as usual, but also wishes to recover a return sub-
address that he can use to later return funds to Alice. If Bob’s address is a
subaddress, he computes

y = Hn ("refund",Hn(k
v
BR))

= Hn ("refund",Hn(k
v
B(rK

s
B)))

= Hn ("refund",Hn(r(k
v
BK

s
B)))

= Hn ("refund",Hn(rK
v
B))

to recover y. Otherwise, the same computation yields

y = Hn ("refund",Hn(k
v
BR))

y = Hn ("refund",Hn(k
v
B(rG)))

= Hn ("refund",Hn(r(k
v
BG)))

= Hn ("refund",Hn(rK
v
B))

to recover y. In both cases, this is the same value generated by Alice. Then, he
computes yF = kvAK

o
c . At this point, Bob defines

(Kv,r
A ,Ks,r

A) = (yF,Ko
c) = (kvAK

o
c ,K

o
c)

as Alice’s return subaddress.
Bob can then construct return transactions to Alice as usual using her return

subaddress. When he does so, he generates a one-time output key Ko,r to Alice:

1. Samples a scalar r′ uniformly at random.

2. Computes the one-time output key Ko,r = Hn(r
′Kv,r

A)G+Ks,r
A .

3. Computes R′ = r′Ks,r
A as the transaction key.

4. Continues generating the output as usual.

4

To show that Alice can receive funds to her return subaddress, observe that
she computes the following as part of the usual process:

Ko,r − Hn (k
v
A(r

′Ks,r
A))G = Hn(r

′Kv,r
A)G+Ks,r

A − Hn (r
′(kvAK

o
c))G

= Hn(r
′Kv,r

A)G+Ks,r
A − Hn(r

′Kv,r
A)G

= Ks,r
A

Provided that Alice has previously stored Ks,r
A = Ko

c in her subaddress lookup
table, she will associate the funds with her original transaction to Bob.

2.2 Protocol for non-return functionality

It may be the case that Alice does not wish to include return data in her
transaction to Bob. If she simply did not include the value F as associated data,
any network observer could trivially distinguish this case, which violates the
design requirements. It is not, however, sufficient to include a random value for
F , since Bob would be unable to identify that the corresponding reconstructed
return subaddress was not intended to be used, and any funds sent to the
subaddress could not be received by Alice and would effectively be lost.

Instead, Alice computes y as above, but sets F = y−1G. If Bob subsequently
computes yF = G during the subaddress recovery process, he identifies that
Alice has not provided return data and aborts.

Salvium notes that they do not provide for this functionality in their im-
plementation. However, it is described in the original proposal, so we describe
it here for completeness. It is also not possible for the network to detect if
this functionality is used, as it is semantically identical to the use of return
functionality.

2.3 Analysis

2.3.1 Design requirements

We must show that this construction meets the informal design requirements
given above.

Requirement 1 is that a transaction not including return data be indistin-
guishable to an observer from a transaction not including this data. To see why
this should hold, observe first that a transaction not including return data sup-
plies the value F = y−1G. If the nonce r is sampled uniformly at random and
Hn is a secure cryptographic hash function with output uniformly distributed
in Zl, then y is also distributed uniformly at random. This implies that F is
as well. (Note that the case y = 0 occurs only with negligible probability, in
which case F is undefined and Alice resamples the nonce.) In the case where a
transaction includes return data, we have F = y−1kvAK

o
c instead. Provided that

kvAK
o
c ̸= 0, this group element is a generator, and the same reasoning applies.

Requirement 2 is that multiple transactions including return data for Alice
should not be linkable by an observer. This follows immediately from the same
reasoning as above.

5

Requirement 3 is that Bob be able to determine if Alice included return data
or not. As noted, if Bob computes yF = G, he assumes that Alice did not wish
to include return data. This process therefore fails only if there is a collision
kvAK

o
c = G, which occurs if Alice is honest only with negligible probability.

Requirement 4 is that return data be reusable, such that Bob can use it to
produce as many return transactions as it wishes. This follows immediately since
the return data recovered by the recipient is constructed as a semantically-valid
subaddress.

Requirement 5 is that no entity aside from Bob (or his delegate) can recover
return data from a transaction. Given transaction data that includes F , it must
be infeasible for such an entity to produce yF . This almost certainly holds given
the construction of y, which is the output of a domain-separated cryptographic
hash function whose input is itself a hash-based derivation of a sender-recipient
shared secret. This shared secret can be computed given the recipient’s key kvB ,
which can be delegated for scanning purposes. Formalizing this reasoning given
all other transaction data requires a more complex security model.

Requirement 6 is that no entity aside from Alice (or her delegate) can re-
ceive funds sent in a return transaction. This effectively requires only that no
component of the secret keypair corresponding to a return subaddress be com-
putable by an adversary. Given that the secret key koc corresponding to the
change output one-time key Ko

c = kocG is computable only by Alice (as is the
case under the Monero protocol’s implicit security model), and given that the
return subaddress is valid, this follows immediately.

2.3.2 Subaddress implications

The return address that Bob computes for Alice has the form of a subaddress.
As noted, this means Alice must use a lookup table during the scanning process
in order to receive the return transaction from Bob. Specifically, Alice computes
the value

Ks,r
A = Ko

c = Hn(k
v
AR)G+Ks

A

from this process. She then must query a local table to map this value onto
data sufficient for her to recover the subaddress index. When she later wishes
to spend the funds, she must further recover koc .

For general subaddress-destined transaction receipt, it suffices for this table
to map a subaddress component Ks

A to the index used to generate it; this
allows the sender to compute ksA, which is required to then compute the one-
time output signing key. In the case of a return subaddress, this is made more
complex since the index corresponding to the subaddress component Ks

A used
to produce the change output Ko

c is not sufficient to produce ksA (and then koc),
as Alice also requires access to the transaction key R from the transaction that
she originally used to produce the change output (in addition to the transaction
R′ from the return transaction sent from Bob).

Salvium must therefore ensure that the subaddress lookup table design used
for this purpose accounts for the additional data required for Alice to identify

6

the subaddress index associated to a return subaddress, as well as to compute
koc in order to later spend the funds.

The use of subaddresses also means that Alice may be vulnerable to the Janus
attack, where an attacker attempts to link potential subaddresses. To execute
the attack in the context of return transactions, Bob receives two transactions
from Alice, and uses return subaddress components from both transactions to
produce a “hybrid” subaddress to which he produces a return transaction. If
Alice indicates acceptance of this transaction (either out of band or using other
heuristics or analysis), then Bob knows they are linked.

We note that this attack is not unique to the return address context, and
applies to subaddresses generally. However, any transaction with a return ad-
dress generates a new subaddress and is therefore susceptible with respect to
any other such transaction; this differs from the more general case where new
subaddresses are generated only on demand.

2.3.3 Return data encryption

We note a modification that may be useful for analysis or efficiency. Specifically,
the value F may be computed in a simpler manner that does not require scalar
or group operations.

Instead of computing

y = Hn ("refund",Hn(rK
v
B))

and then F = y−1kvAK
o
c when producing a return transaction, Alice instead

produces a symmetric encryption key using a key derivation function on input
Hn(rK

v
B), and then encrypts kvAK

o
c to obtain F using this key. If Alice does

not wish to include return data, she instead encrypts any agreed-upon 32-byte
invalid point encoding (such as all zero bytes) to signal this.

Instead of computing (yF,Ko
c) as the return subaddress, Bob instead per-

forms the same key derivation, decrypts F using this key to obtain kvAK
o
c , and

then uses (kvAK
o
c ,K

o
c) as the return subaddress. If this decryption yields the

distinguished invalid encoding, Bob knows that Alice did not wish to include
return data, and aborts.

As the Salvium protocol already uses a simple XOR operation for encryption
of data against a keystream, this approach could be used here; however, it
is crucial that the key derivation be performed securely to avoid attacks. A
safer (though less efficient) design would use a more standard stream cipher
construction, such as ChaCha12; this is more flexible for plaintext length, and a
fixed initialization vector may be used since the derived key is always unique.

3 Transaction types

Aside from standard transfer transactions, Salvium introduces four additional
transaction types: three that may be constructed by users, and one that is
constructed by block producers.

7

3.1 Transfer transactions

In transfer transactions, consumed and generated output values must balance
(accounting also for a transaction fee). To protect values from being known by
an adversary, non-fee values are bound computationally using Pedersen com-
mitments.

Suppose a transaction consumes m outputs, each represented by a Pedersen
commitment

Ca
j = xjG+ ajH

for 1 ≤ j ≤ m; here xj is the mask and aj the value. Suppose also that
the transaction generates p outputs, each similarly represented by a Pedersen
commitment

Cb
t = ytG+ btH

for 0 ≤ t < p. Assume the transaction also has an associated fee f . The
transaction balances if and only if

m∑
j=1

aj −

(
p−1∑
t=0

bt + f

)
= 0

holds.
The transaction contains, for each consumed output, a corresponding so-

called pseudo-output commitment of the form

C ′a
j = x′

jG+ ajH

to the same amount, but with a different mask. Masks are also constructed such
that

m∑
j=1

x′
j −

p−1∑
t=0

yj = 0

holds. Using this, it is the case (except with negligible probability) that

m∑
j=1

C ′a
j −

(
p−1∑
t=0

Cb
t + fH

)
= 0 (1)

if and only if the transaction balances; this equation is checked by verifiers for
each transaction.

Because commitments are elements of a finite cyclic group, it is important
that they not bind to values that can result in overflow during the evaluation
of Equation 1. To ensure this cannot occur, each generated output commit-
ment comes equipped with a range proof asserting that the represented value is
contained within a range [0, 264) whose upper bound is much (much!) smaller
than the group order (approximately 2252). The fee f is limited to this range
as well; because it is presented in the clear, there is no need for an associated
range proof.

8

3.2 Additional transaction types

In addition to these transfer transactions, Salvium introduces the following
transaction types (available to users) where the sum of consumed output values
strictly exceeds the sum of generated output values (including the fee):

• Burn. In this transaction type, excess value is discarded; this effectively
deflates the available supply.

• Convert. In this transaction type, excess value is used to mint a new
output of a different asset type.

• Yield. In this transaction type, excess value is used to compute a later
payout amount.

In each of these cases, the excess value v is included as plaintext additional
transaction data. This requires that Equation 1 be modified in a straightforward
way:

m∑
j=1

C ′a
j −

(
p−1∑
t=0

Cb
t + fH

)
= vH

Verifiers must check that the excess value v is contained within the range [0, 264).
Salvium notes that while their implementation is able to support convert

transactions, they are currently disabled and therefore unavailable to users.
There is an additional transaction type not available to users, and which is

generated by block producers on each block:

• Protocol. This transaction type performs two tasks:

– For each convert transaction in the block, it mints a new output of
a specified asset type; the value of this output is determined by an
oracle query.

– For each yield transaction in the block occurring 21600 blocks prior,
it mints a new output whose value is determined by the yield trans-
action’s excess value according to an informally-described formula.

3.3 Destination specification

For convert and yield transactions, it is necessary for the intended destination
of newly-minted outputs to be specified in a manner that can be checked by
verifiers. That is, a verifier must be able to inspect the corresponding protocol
transaction and assert that the destination for each of its minted outputs is
correct. Otherwise, a block producer could substitute a valid minted output
for one of its own choosing with an unintended destination in a manner not
detectable by the network.

Simply using the proposed return functionality is insufficient, since its design
requirements assert that no observer be able to determine the return subaddress
(if any) associated with a transaction; further, the existing informal security

9

model does not permit such an observer to identify the address associated with
any honestly-generated transaction.

Salvium addresses this issue by modifying the structure of convert and yield
transactions. In such transactions, the sender follows the steps for return func-
tionality. However, instead of including the value F in the transaction as addi-
tional data, it instead does the following:

1. Samples a scalar r′ uniformly at random.

2. Computes R′ = rKs
A.

3. Sets (Kv,r
A ,Kv,s

A) = (kvAK
o
c ,K

o
c) as in the return protocol.

4. Computes Ko,r = Hn(k
v
AR

′)G+Ks,r
A .

5. Includes the values R′ and Ko,r in the transaction as additional data.

Effectively, the sender plays the role of a recipient generating a return transac-
tion, where R′ is computed as a transaction key and Ko,r as a one-time output
key.

When generating a protocol transaction, a block producer respectively uses
R′ and Ko,r as the transaction and one-time output keys when minting new out-
puts. The presence of these values in each original convert and yield transaction
means the network can verify such outputs are correctly generated. Further, be-
cause the construction of these values follows the return transaction protocol,
the sender can recover protocol transaction outputs.

We note an important benefit to this design: that the construction does not
leak the sender’s address (whether a subaddress or otherwise) to block producers
or the network, as the output is constructed in the usual manner. Further,
we observe that neither block producers nor the network can determine which
output in a convert or yield transaction is a change output. To do so would
require such an entity to compute the Diffie-Hellman shared secret used to
produce Ko,r, which is infeasible without knowledge of the secret value kvA.

3.4 Analysis

3.4.1 Censorship risk

Transfer transactions reduce the amount of plaintext data available to the net-
work. For instance, they protect output values using commitments. This is
useful in part because it reduces the opportuinity for network participants and
block producers to censor transactions based on visible data or metadata asso-
ciated to them.

The addition of new transaction types changes this visibility. In the case
of a burn transaction, the value discarded is available to the network. In the
case of a convert transaction, the value and asset type used in the conversion
are available. In the case of a yield transaction, the value used to establish the
later payout is available.

10

Each of these increases the risk of censorship. Network participants relaying
pending transactions may use such information to decide if they wish to pass
along a transaction to their peers, or simply discard it. Block producers may
also use the information to decide if they wish to include a transaction in a
block, which can deny a user access to converted funds or a later yield payout.

A related risk is that if a block producer chooses to selectively delay the
inclusion of a transaction in a block, it can affect the value available to a user.
Failing to process a burn transaction immediately keeps the supply higher, which
may affect asset value depending on market behavior. Delaying the inclusion
of a convert transaction means the block producer can examine the output
of the oracle used to determine conversion rates, effectively exerting control
over available value after the conversion takes place. Selective delay of a yield
transaction could presumably affect the timing and value of the later payout,
depending on the computation of the payout according to consensus rules.

These risks should be carefully considered and communicated, as they are
challenging to mitigate whenever data or metadata are visible.

3.4.2 Protocol transaction structure

The information description of the protocol transaction design specifies that
the transaction consists of a “single coinbase input” in addition to outputs
constructed according to the protocol above. The role of this structure was
initially unclear.

Salvium notes that this design is intended to better accommodate parsing
tools, and does not otherwise impact consensus rules.

3.4.3 Use of return functionality

The informal description of the design of convert and yield transactions implies
that the sender uses change outputs to compute the value Ko,r

A used later by
block producers, in the same manner described for return transactions. While
this approach works and appears to meet its goals, it is inefficient. Specifically,
it requires that the sender perform a subaddress table lookup using the method
described in the return transaction protocol when performing the scanning pro-
cess. This lookup will be for a change-based subaddress that is unique to each
transaction, increasing the size of the lookup table. As discussed, this requires
storage of more data than for a standard subaddress transaction. Further, it is
not necessary for the sender to compute R′ = r′G by first sampling r′ since it
already has access to kvA to complete the required Diffie-Hellman shared secret.

Instead, the sender can simplify the construction of the additional data in-
cluded in its convert or yield transaction. Specifically, it instead does the fol-
lowing:

1. Samples a group element R′ uniformly at random.

2. Computes Ko,r = Hn(k
v
AR

′)G+Ks
A.

3. Includes the values R′ and Ko,r in the transaction as additional data.

11

As before, the block producer uses R′ as a transaction key andKo,r as a one-time
output key in a protocol transaction. With this updated protocol, the sender
may use its existing subaddress lookup table to recover the index associated to
Ks

A during scanning.

3.4.4 Reuse of protocol transaction outputs

The Monero protocol, upon which Salvium is based, does not prohibit the reuse
of one-time output keys between transactions.

This introduces risk if not handled safely. For example, if an attacker sees a
pending transfer transaction, it can generate its own transaction reusing a one-
time output key with a trivial value. If the user spends the attacker’s output
and later attempts to spend the honest output, the latter will be rejected by
the network as a double-spend attempt, effectively burning the honest funds
at little cost to the attacker. A common non-consensus mitigation is to ensure
that wallets only show users the highest-valued output among any that share
a one-time key, ensuring that an attacker could only supply more funds to the
user than would otherwise exist. Other mitigations, like binding transaction
context to one-time output keys, exist but are not in known use.

This risk still exists in Salvium, but in more complex ways due to the ex-
pansion of transaction types.

Because convert transactions result in protocol-enforced generation of out-
puts of different asset types in protocol transactions, it is not clear how the
existing “highest-value” wallet rule would operate to decide which of a set of
duplicated outputs to present to the user.

Additionally, because yield transactions result in later generation of outputs
in protocol transactions that presumably increase supply in a controlled manner,
duplication of one-time output keys could be used in an attempt to inhibit this
inflation, albeit at a nontrivial cost to an attacker.

Generally, this overall risk exists because an attacker can produce a dupli-
cate output key at one of three times: while the user’s honest convert or yield
transaction is pending, after the honest transaction but prior to the correspond-
ing protocol transaction, or after the protocol transaction. The duplicate key
may also be used in a different transaction type than the honest transaction.

Therefore, a combination of one or more consensus rules and non-consensus
wallet mitigations may be helpful, depending on exact implementation:

• For any one-time output key specified by a convert or yield transaction,
require an associated signature on the key as a consensus rule. Binding
relevant transaction and output context to the signature could mitigate
malleability or replay by an attacker, but at an added cost to transaction
size and verification complexity.

• For any one-time output key specified by a convert or yield transaction
(and possibly even burn or transfer transactions), have wallets bind con-
text into the Diffie-Hellman exchange hashing operation used to produce
the key. This could mitigate malleability or replay by an attacker, but may

12

still allow unwanted strict duplication that results in multiple associated
protocol transaction outputs.

• For any one-time output specified by a convert or yield transaction, have
wallets refuse to present receipt of funds directed to such outputs aside
from those in corresponding protocol transactions. However, this may still
allow an attacker to induce multiple protocol transaction outputs.

• Retain the functionality of the existing “highest-value” wallet rule for
transfer transactions. If done carefully with respect to other transaction
types, this may prevent an attacker from performing certain dusting at-
tacks.

13

	Introduction
	Return functionality
	Protocol for return functionality
	Protocol for non-return functionality
	Analysis
	Design requirements
	Subaddress implications
	Return data encryption

	Transaction types
	Transfer transactions
	Additional transaction types
	Destination specification
	Analysis
	Censorship risk
	Protocol transaction structure
	Use of return functionality
	Reuse of protocol transaction outputs

